Interaction between the first and last nucleotides of pre-mRNA introns is a determinant of 3' splice site selection in S. cerevisiae.

نویسندگان

  • G Chanfreau
  • P Legrain
  • B Dujon
  • A Jacquier
چکیده

The splicing of group II and nuclear pre-mRNAs introns occurs via a similar splicing pathway and some of the RNA-RNA interactions involved in these splicing reactions show structural similarities. Recently, genetic analyses performed in a group II intron and the yeast nuclear actin gene suggested that non Watson-Crick interactions between intron boundaries are important for the second splicing step efficiency in both classes of introns. We here show that, in the yeast nuclear rp51A intron, a G to A mutation at the first position activates cryptic 3' splice sites with the sequences UAC/ or UAA/. Moreover, the natural 3' splice site could be reactivated by a G to C substitution of the last intron nucleotide. These results demonstrate that the interaction between the first and last intron nucleotides is a conserved feature of nuclear pre-mRNA splicing in yeast and is involved in the mechanism of 3' splice site selection.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The interaction between the first and last intron nucleotides in the second step of pre-mRNA splicing is independent of other conserved intron nucleotides.

Virtually all pre-mRNA introns begin with the sequence /GU and end with AG/ (where / indicates a border between an exon and an intron). We have previously shown that the G residues at the first and last positions of the yeast actin intron interact during the second step of splicing. In this work, we ask if other highly conserved intron nucleotides also take part in this /G-G/ interaction. Of sp...

متن کامل

Exon definition may facilitate splice site selection in RNAs with multiple exons.

Interactions at the 3' end of the intron initiate spliceosome assembly and splice site selection in vertebrate pre-mRNAs. Multiple factors, including U1 small nuclear ribonucleoproteins (snRNPs), are involved in initial recognition at the 3' end of the intron. Experiments were designed to test the possibility that U1 snRNP interaction at the 3' end of the intron during early assembly functions ...

متن کامل

Logitlinear models for the prediction of splice sites in plant pre-mRNA sequences.

Pre-mRNA splicing in plants, while generally similar to the processes in vertebrates and yeast, is thought to involve plant specific cis-acting elements. Both monocot and dicot introns are typically strongly enriched in U nucleotides, and AU- or U-rich segments are thought to be involved in intron recognition, splice site selection, and splicing efficiency. We have applied logitlinear models to...

متن کامل

Splice site choice and splicing efficiency are positively influenced by pre-mRNA intramolecular base pairing in yeast.

Many of the mechanisms that govern splice site selection and splice site partner assignment during pre-mRNA splicing are obscure. To address this problem, we analyzed the splicing of transcripts containing chimeric introns or splice site duplications derived from two natural yeast genes. Our experiments indicate that there are strong context effects that influence splicing efficiency and relati...

متن کامل

The architecture of pre-mRNAs affects mechanisms of splice-site pairing.

The exon/intron architecture of genes determines whether components of the spliceosome recognize splice sites across the intron or across the exon. Using in vitro splicing assays, we demonstrate that splice-site recognition across introns ceases when intron size is between 200 and 250 nucleotides. Beyond this threshold, splice sites are recognized across the exon. Splice-site recognition across...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nucleic acids research

دوره 22 11  شماره 

صفحات  -

تاریخ انتشار 1994